A note on Hang-Wang’s hemisphere rigidity theorem

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A note on spectral mapping theorem

This paper aims to present the well-known spectral mapping theorem for multi-variable functions.

متن کامل

A note on matrix rigidity

In this paper we give an explicit construction of n × n matrices over finite fields which are somewhat rigid, in that if we change at most k entries in each row, its rank remains at least Cn(logq k)/k, where q is the size of the field and C is an absolute constant. Our matrices satify a somewhat stronger property, we which explain and call “strong rigidity.” We introduce and briefly discuss str...

متن کامل

On Mason’s rigidity theorem

Following an argument proposed by Mason, we prove that there are no algebraically special asymptotically simple vacuum space-times with a smooth, shear-free, geodesic congruence of principal null directions extending transversally to a cross-section of I . Our analysis leaves the door open for escaping this conclusion if the congruence is not smooth, or not transverse to I . One of the elements...

متن کامل

A note on Pollard’s Theorem

Let A,B be nonempty subsets of a an abelian group G. Let Ni(A,B) denote the set of elements of G having i distinct decompositions as a product of an element of A and an element of B. We prove that ∑ 1≤i≤t |Ni(A,B)| ≥ t(|A|+ |B| − t− α+ 1 + w) − w, where α is the largest size of a coset contained in AB and w = min(α − 1, 1), with a strict inequality if α ≥ 3 and t ≥ 2, or if α ≥ 2 and t = 2. Thi...

متن کامل

A Note on Goodman's Theorem

Goodman's theorem states that intuitionistic arithmetic in all nite types plus full choice, HA ! + AC, is conservative over rst-order intuitionistic arithmetic HA. We show that this result does not extend to various subsystems of HA ! , HA with restricted induction.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematische Zeitschrift

سال: 2020

ISSN: 0025-5874,1432-1823

DOI: 10.1007/s00209-020-02469-w